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Abstract
It is demonstrated that the magnetic circular dichroism in x-ray absorption (XMCD) can be
used to probe the spin and orbital high-field susceptibilities of spontaneously magnetic solids on
the basis of the so-called XMCD sum rules. A corresponding theoretical description is
presented that is formulated in terms of the fully relativistic multiple scattering Green’s function
formalism. Examples for the field-induced changes in XMCD spectra are given together with
an application of the sum rules to these spectra that demonstrates their relation to the high-field
susceptibility.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The circular magnetic dichroism in x-ray absorption (XMCD)
is now a widely used phenomenon to investigate the
magnetic properties of spontaneously magnetized materials in
a component-resolved way [1]. Most of the corresponding
experimental investigations aim to deduce the element-specific
spin and orbital magnetic moments on the basis of the so-
called XMCD sum rules [1–4]. These allow us to relate
the moments to linear combinations of energy integrals over
XMCD spectra defined as the difference in absorption spectra
for left and right circularly polarized x-rays. As an XMCD
experiment probes the projection of a magnetic moment onto
the direction of the incoming x-ray beam it is straightforwardly
possible to follow the response of the magnetization to an
external field. In particular this allows us to record hysteresis
loops in an element-specific way and, for example, to study
the interlayer coupling in layered magnetic systems in a most
detailed way [5].

Another interesting application is the investigation of the
magnetic anisotropy energy �Eaniso(n̂, n̂′) [6, 7]. This is based
on the one hand on the access to the orbital moment μorb and its
anisotropy �μorb(n̂, n̂′) via the XMCD, and on the other hand
on the relation between �μorb and the anisotropy energy [8, 9].
Obviously, this type of experiment again has to be performed in
the presence of an external field Bext that is used to orient the

magnetization along the orientations n̂(n̂′) which the energy
difference �Eaniso(n̂, n̂′) refers to.

The last two applications deal with the response of a
system to a static magnetic field. However, there are also
a number of interesting XMCD experiments that exploit a
time-dependent field. One example is the investigation of the
relaxation after a strong magnetic field pulse [10]. While
the first of this type of experiment used very small magnetic
fields up to 30 mT the use of pulsed fields up to 35 T
became possible during the last few years [11]. Such high
fields obviously mean a pronounced perturbation to the ground
state leading to metastable magnetic states or inducing an
appreciable magnetization in otherwise non-magnetic solids.
In fact, moderately high static magnetic fields up to about
5 T have been used a few years ago to study the induced
magnetism via the XMCD [12]. In this contribution it is argued
that high magnetic fields applied to spontaneously magnetized
solids not only lead to an alignment of the domains in the
sample and a subsequent saturation of the magnetization but
in general to an additional induced magnetization that can be
probed by the XMCD. In the following we give a description of
this phenomenon that is based on ab initio electronic structure
calculations. Corresponding applications to ferromagnetic
transition-metal systems are meant to demonstrate the field-
induced XMCD in these systems and the use of the XMCD
sum rules to deduce their high-field susceptibility.
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Figure 1. Dependence of the spin magnetization of a non-magnetic (left) and spontaneously ferromagnetic (right) solid on an external
magnetic field. The lower panel shows the re-population of the electronic states due to a magnetic field leading to the spin susceptibility.

2. Theoretical framework

2.1. Basic considerations

For weak external fields �B the magnetization �M( �B) induced
in a non-magnetic solid will, in general, depend linearly on
the field strength B as it is sketched in figure 1. Assuming
a metallic system the induced magnetic moment is connected
generally with a re-population of the states for spin up and
down (see left column of figure 1). Linear response theory
provides an adequate basis for this situation leading, for
example, to the Pauli spin susceptibility χ0

p to be proportional
to the density of states at the Fermi energy if the Stoner
enhancement is ignored:

χ0
p = 2μ2

Bn(EF) (1)

with μB being the Bohr magneton (see bottom left in figure 1).
In practice, however, the Stoner enhancement cannot be

ignored and orbital χorb contributions to the susceptibility of
the same order as the spin susceptibility χspin may contribute.
In addition spin–orbit coupling may give rise to additional
contributions to χspin as well as χorb [13]. A closed description
of all these terms was worked out by the authors [14, 15]
making use of a fully relativistic approach that expresses the
response functions in terms of the Green’s function that in
turn is evaluated by means of multiple scattering theory or the
Korringa–Kohn–Rostoker (KKR) band structure method. This
formal basis was also used in the past to derive a parameter-
free description of the XMCD on exactly the same footing.
Accordingly, a combination of both the description for the

magnetic susceptibility as well as for the XMCD could be done
straightforwardly to arrive at a description of the field-induced
XMCD in non-magnetic solids [16].

For a ferromagnet a weak external field will affect the
domain structure and will lead to a single domain if it is strong
enough. The apparently saturated magnetization will in general
increase linearly with increasing field, as it is sketched in the
right column of figure 1, with the slope of the magnetization
curve M(B) being the high-field susceptibility. Considering a
metallic ferromagnet the corresponding unenhanced Pauli spin
susceptibility χ0

P is given by [17]

χ0
p = 4μ2

B

(
1

n↑(EF)
+ 1

n↓(EF)

)−1

, (2)

where n↑(↓)(EF) are the spin-resolved densities of states at the
Fermi level (see bottom right in figure 1).

As could be demonstrated by the authors, the above-
mentioned linear response formalism allows us also to deal
with systems with a spontaneous magnetization present in the
ground state. This gave access among others to all spin and
orbital contributions to the high-field susceptibility including
all influences due to the presence of spin–orbit coupling [18].
Accordingly, it is quite natural to also apply the combined
description of induced magnetization and XMCD mentioned
above to spontaneously magnetized solids. As there are only a
few practical differences for these two situations only the major
features are given in the following.
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2.2. Combined description of induced magnetization and
field-induced XMCD in magnetic solids

The Green’s function formalism allows us to describe the
influence of an external magnetic field in a very elegant way by
means of the so-called Dyson equation. Representing the field-
free case by the Green’s function G0, the Green’s function G B

for the finite field case is given by (in operator form, with the
energy dependency suppressed)

G B = G0 + G0�HB G B . (3)

Here �HB represents the perturbation of the system due
to the field that stems from the direct Zeeman-type coupling
of the spin and orbital degrees of freedom to the external field
Bext as well as a feedback term due to changes of the electron–
electron interaction:

�HB(�r) = βσzμB Bext + β l̂zμB Bext︸ ︷︷ ︸
Zeeman

+ �vxc(�r) + �vH(�r)︸ ︷︷ ︸
Stoner

.

(4)
The latter term gives rise to Stoner-type enhancement

effects and may be treated within spin density functional
theory, i.e. in practice by the local spin density approximation
(LSDA) [19–21]. It should be emphasized that, in contrast
to non-magnetic solids, this term will in general include
contributions to charge rearrangements or charge transfer as
well as a change �EF in the Fermi energy (for more details
see [18]).

Applying a first-order approximation to equation (3),
i.e. restricting to linear response, G B is given by

G B = G0 + G0�HB G0 = G0 + δG B , (5)

where δG B represents the distortion of the electronic
system and allows us to express all field-induced properties.
Assuming a collinear magnetization oriented along ẑ the spin
magnetization �mspin(�r) may be written as

�mspin(r) = −μB

π
�EF Im TraceβσzG0(EF)

− μB

π
Trace Im

∫ EF

dE βσz G0�HB G0 (6)

with corresponding expressions for the induced orbital
magnetization �morb(�r) and charge density �n(�r). Here it
should be noted that the perturbation �HB implicitly depends
on the induced densities �mspin(�r), �morb(�r) and �n(�r) as
well as the Fermi energy shift �EF. As a consequence the
equations for these quantities have to be solved simultaneously
also fixing δG B this way.

With the influence of the external field expressed by
equation (5), the corresponding x-ray absorption coefficient
can be calculated from the standard expression [22–24]

μB
λ (ω) ∝

∑
i

〈
i |X†
�qλ

G B(E)X �qλ|
i〉�(E − EF). (7)

Here the wavefunction 
i represents the various core
states i involved in transitions due to a radiation field with
frequency ω, wavevector �q and polarization λ represented by
the operator X �qλ (for more details see [23]). The final states

above the Fermi energy EF are represented by the Green’s
function G B . According to the splitting of G B into G0 + δG B

in equation (5) one has two corresponding contributions to the
absorption coefficient:

μB
λ (ω) = μ0

λ(ω) + δμB
λ (ω). (8)

Obviously, the first term connected with G0 is the one
usually considered for a magnetic solid. This means the
corresponding circular dichroic signal:

�μ0 = μ0
+ − μ0

− (9)

is connected to the ground state magnetization. The second
term, on the other hand, represents the field-induced change in
absorption with

δμB = δμB
+ − δμB

− (10)

giving the circular dichroism connected with the induced
magnetization. As the latter one is treated in linear order, δμB

will also be proportional to the external field.
As mentioned above the XMCD sum rules provide a linear

relation between the XMCD signal �μ and the spin and orbital
moments, μspin and μorb, respectively, of the absorbing atom.
These relations have been derived originally starting from
an atomic-like non-relativistic description of the electronic
structure including spin–orbit coupling as a correction to
this [1–4]. The additional various simplifying assumptions
used to derive the XMCD sum rules have been listed, for
example, in [25]. From this it is obvious that they are not
applicable to all situations but may fail in special cases [26]. In
particular, the applicability to itinerant-electron magnets was
questioned [27, 28]. However, alternative derivations for the
XMCD sum rules [29, 30] together with numerous numerical
studies [31–37, 23] demonstrated that their application to
metallic ferromagnets should in general lead to deviations of
not more than 5–10% between the calculated moments and
the ones deduced from the calculated XMCD spectra using the
sum rules.

As the XMCD spectra reflect the spin and orbital
polarization of the electronic states including effects of an
external magnetic field B , the sum rules give access to the
spin and orbital moments (μB

spin(orb)) of the system perturbed by
the presence of B . In the linear response regime μB

spin(orb) can

be split into its part μ0
spin(orb) connected with the unperturbed

ground state and its field-induced contribution �μspin(orb). The
latter one varies linearly with B , i.e. one has �μspin(orb) =
χspin(orb) Ḃ, with χspin(orb) the corresponding spin (orbital) high-
field susceptibility. The one-to-one correspondence of the
XMCD spectrum �μ0 and the moments μ0

spin(orb) for the
unperturbed case on the one hand and the XMCD spectrum
δμB and the moments �μspin(orb) on the other hand allow
us to separate the ground state from the induced properties
due to their different field dependence. As δμB

λ as well as
the connected induced moments �μspin(orb) are proportional
to B , division of the corresponding sum rules for the induced
quantities by B leads for L2,3 absorption edges to

1

B

∫ (
δμB

L3
− 2δμB

L2

)
dE = N

3NhμB

(
χspin + 7χT

)
, (11)
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Figure 2. The left column shows the calculated x-ray absorption spectra μ̄0 (top) for the L2,3 edges of Ni together with the corresponding
magnetic XMCD spectrum �μ0 (bottom) for the ground state, i.e. no external field present. The right column shows the corresponding
field-induced changes δμ̄B and �μB , respectively, for an external field of 10 T.

1

B

∫ (
δμB

L3
+ δμB

L2

)
dE = N

2NhμB
χorb, (12)

where the field-induced contribution to the spin-dipole moment
connected with the spin-dipole operator Tz [4] is accounted for
by a corresponding high-field susceptibility χT . Using linear
response theory the high-field spin and orbital susceptibilities
χspin and χorb can be calculated from the expressions

χspin = −μB

π

Ps
n (EF)

n(EF)
Trace Im

∫ EF

dE G�H̄G

− μB

π
Trace Im

∫ EF

dE βσz Gn�H̄Gn, (13)

χorb = −μB

π

Po
n (EF)

n(EF)
Trace Im

∫ EF

dE G�H̄G

− μB

π
Trace Im

∫ EF

dE βlz Gn�H̄Gn, (14)

where n(EF), Ps
n (EF) and Po

n (EF) are the density of states,
spin polarization and orbital polarization, respectively, at the
Fermi energy EF and �H̄ is the distortion given by equation (4)
divided by the field strength B (for more details see [18]). For
χT a corresponding expression can be given [38].

Within a non-relativistic description χ spin consists only of
the Stoner-enhanced Pauli susceptibility χPauli, while a fully
relativistic treatment gives rise to a spin–orbit-induced cross-
term χso due to the coupling of the field to the orbital degree of
freedom:

χspin = χPauli + χso. (15)

Analogously, the Van Vleck term χVV would be the
primary term to be considered in the context of the sum rules.
Again, spin–orbit coupling gives rise to a cross-term χos due to
the coupling of the field to the spin degree of freedom:

χorb = χVV + χos. (16)

Finally, the susceptibility χT in equation (11) represents
the induced dipolar magnetic moment connected with the Tz

operator [39, 38].

3. Results and discussion

The scheme outlined above has been implemented using
the fully relativistic spin-polarized KKR band structure
method to calculate the electronic Green’s function G0 for
magnetic solids [40]. Corresponding results for the high-field
susceptibility χ of ferromagnetic transition metals and alloys,
obtained on the basis of the LSDA, have been presented in a
previous publication [18], where technical details concerning
the implementation can be found. In the following we
present and discuss results for the field-induced XMCD and
its relation to the high-field susceptibility. To demonstrate the
impact of an external field on the XAS and XMCD spectra
corresponding results for the L2,3 edges of ferromagnetic Ni
are shown in figure 2. The panel at the bottom of figure 2
gives the corresponding changes of the spectra δμ̄B and �μB ,
respectively, induced by a field of 10 T. As one notes, even
the polarization-averaged XAS spectrum μ̄ is modified in a
noticeable way due to the resonance-like shape of the δμ̄B

spectra. The corrections of the XMCD spectrum �μ are
expected to be comparable as for μ̄. For a field of 10 T the
peak height for the �μ spectrum should be changed by several
tenths of a per cent and for that reason should be detectable.
The shape of the corrections δμB to �μ are obviously quite
different from δμ̄B giving the change for μ̄. Comparing
the sign and lineshape of the δμB spectrum with that of the
�μ0 spectrum positive values for the induced spin and orbital
magnetic moments may be expected on the basis of the XMCD
sum rules presented in equations (11) and (12).

To test the applicability and reliability of the sum rules for
a determination of the high-field susceptibility corresponding
investigations were done for the ferromagnetic disordered alloy
system Fex Pt1−x . Figure 3 shows results specific for Fe as a
function of the concentration x . The open symbols present
the bare and enhanced spin susceptibilities χ0Fe

spin and χFe
spin,

respectively, as well as the orbital Van Vleck susceptibility χFe
VV

of Fe as calculated directly using the response formalism (see
equations (13) and (14)). As one notes the Stoner enhancement
of χ0Fe

spin is smaller than a factor of 2. The resulting enhanced
susceptibility χFe

spin is less than 50% of the orbital Van Vleck

4



J. Phys.: Condens. Matter 21 (2009) 326004 H Ebert and S Mankovsky

Figure 3. Spin and orbital high-field susceptibilities calculated
directly via equations (13) and (14) (open symbols) for Fe in the
disordered alloy Fex Pt1−x as a function of the concentration. In
addition results for the susceptibilities are shown have been deduced
from calculated L2,3 XMCD spectra of Fe using the sum rules in
equations (11) and (12).

susceptibility χFe
VV for all concentrations. This situation is

similar to the ferromagnetic alloy system Fex Co1−x , where the
Van Vleck susceptibility exceeds the spin susceptibility χFe

spin
by more than a factor of 3 for all concentrations. Also for
FexCo1−xχ

Fe
orb varies only weakly with concentration, while

χFe
spin shows a rather pronounced concentration dependence

with a maximum at about 90 at.% Fe content.
Figure 3 shows, in addition to the directly calculated

susceptibilities, corresponding results deduced from the
calculated �μB spectra using the XMCD sum rules shown
in equations (11) and (12). As one can see, the various
spectroscopically deduced susceptibilities χ0Fe

spin, χFe
spin and χFe

VV
compare very well with their directly calculated counterparts.
This holds concerning their relative magnitude as well as their
variation with composition. Of course, no perfect matching
of the corresponding directly calculated and spectroscopic
susceptibility can be expected due to the various simplifying
assumptions made in deriving the sum rules (see above). In
applying the sum rules fixing the boundary for the integrals
over the photon energies on the left-hand side of equations (11)
and (12) introduce another uncertainty, as was extensively
discussed in the literature (e.g. [31]). Finally, it has to be
noted that for the comparison in figure 3 we neglected the
contribution to the spectroscopic susceptibility χT due to the
Tz term (see equation (11)). For the case of the field-induced
XMCD in non-magnetic materials this was demonstrated to be
well justified for cubic systems [38]. This should also hold
here, as χT for Fe in fcc-Fex Pt1−x should be caused primarily
by the relatively weak spin–orbit coupling of Fe.

The good agreement of the directly calculated susceptibil-
ities with their counterparts obtained on the basis of the XMCD
sum rules shown in figure 3 clearly demonstrates the applica-
bility of the sum rules to the metallic ferromagnetic systems
considered here. This implies that performing field-dependent
XMCD measurements should indeed give a very reliable ac-
cess to the component-specific high-field susceptibility that
cannot be achieved so far by other means.

4. Summary

By comparing the situation for non-magnetic solids exposed
to an external magnetic field arguments have been given that
the XMCD should allow us to probe magnetic moments in
magnetically ordered systems induced by high magnetic fields.
Extending an approach recently developed by the authors for
non-magnetic solids, a detailed theoretical description of the
effect could be given. In particular the connection between
the field-induced XMCD and the high-field susceptibility of
the absorber atom was pointed out. Corresponding numerical
studies performed with the spin-polarized relativistic KKR
formalism in the framework of LSDA revealed the size of
the expected field-induced XMCD, showing that it should be
detectable. Furthermore it could clearly be demonstrated that
there is a one-to-one correspondence of the susceptibilities
calculated directly and those deduced from XMCD spectra.
This clearly showed that the field-induced XMCD is indeed
a suitable means to probe the spin and orbital contributions to
the high-field susceptibility in a component-resolved way.
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